Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
JCO Precis Oncol ; 8: e2300539, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38484211

RESUMO

PURPOSE: Paired tumor-germline sequencing can identify somatic variants for targeted therapy and germline pathogenic variants (GPVs) causative of hereditary cancer/tumor predisposition syndromes. It is unknown how patients/families in pediatric oncology use information about an identified GPV. We assessed recall of germline results and actions taken on the basis of findings. METHODS: We completed phone surveys with patients (and/or their parent) with GPVs identified via a single academic medical center's paired tumor-germline sequencing study. Seven hundred forty pediatric (aged 0-25 years) oncology patients were enrolled in this sequencing study between May 2012 and August 2021. Ninety-six participants (13.0%) had at least one GPV identified and were therefore eligible for this survey. The parent/guardian (for patients younger than 18 years or deceased patients) or patients themselves (if 18 years or older) were contacted. Survey topics included germline result recall, experience with genetic counseling, changes to patient's cancer treatment/screening, sharing of results with family members, and lifestyle changes. RESULTS: Fifty-three surveys (response rate, 55.2%) were completed between October 2021 and June 2022. Thirty-seven (69.8%) respondents correctly recalled the identified GPV. Discussing results with a genetic counselor (P = .0001), having a GPV related to the cancer/tumor diagnosis (P = .002), and non-Hispanic White race/ethnicity (P = .02) were associated with accurate recall. Twenty-five respondents (47.2%) reported a change in the child's cancer treatment and/or screening recommendations, 17 respondents (32.1%) made a lifestyle change on the basis of the results, and 44 respondents (83.0%) shared results with at least one family member. CONCLUSION: While most respondents remembered that a GPV was identified in the patient, some did not recall having a GPV found, and others recalled germline findings incorrectly. Future work may determine patient/family preferences for timing/method of result return to optimize patient recall and use of germline results.


Assuntos
Predisposição Genética para Doença , Síndromes Neoplásicas Hereditárias , Humanos , Criança , Predisposição Genética para Doença/genética , Oncologia , Mutação em Linhagem Germinativa/genética , Células Germinativas
4.
Blood Cancer Discov ; 4(1): 34-53, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36350827

RESUMO

Distal enhancers play critical roles in sustaining oncogenic gene-expression programs. We identify aberrant enhancer-like activation of GGAA tandem repeats as a characteristic feature of B-cell acute lymphoblastic leukemia (B-ALL) with genetic defects of the ETV6 transcriptional repressor, including ETV6-RUNX1+ and ETV6-null B-ALL. We show that GGAA repeat enhancers are direct activators of previously identified ETV6-RUNX1+/- like B-ALL "signature" genes, including the likely leukemogenic driver EPOR. When restored to ETV6-deficient B-ALL cells, ETV6 directly binds to GGAA repeat enhancers, represses their acetylation, downregulates adjacent genes, and inhibits B-ALL growth. In ETV6-deficient B-ALL cells, we find that the ETS transcription factor ERG directly binds to GGAA microsatellite enhancers and is required for sustained activation of repeat enhancer-activated genes. Together, our findings reveal an epigenetic gatekeeper function of the ETV6 tumor suppressor gene and establish microsatellite enhancers as a key mechanism underlying the unique gene-expression program of ETV6-RUNX1+/- like B-ALL. SIGNIFICANCE: We find a unifying mechanism underlying a leukemia subtype-defining gene-expression signature that relies on repetitive elements with poor conservation between humans and rodents. The ability of ETV6 to antagonize promiscuous, nonphysiologic ERG activity may shed light on other roles of these key regulators in hematolymphoid development and human disease. See related commentary by Mercher, p. 2. This article is highlighted in the In This Issue feature, p. 1.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Humanos , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Ativação Transcricional , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Transcriptoma , Repetições de Microssatélites , Regulador Transcricional ERG/genética , Regulador Transcricional ERG/metabolismo
5.
Biochim Biophys Acta ; 1860(1 Pt B): 234-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26071686

RESUMO

BACKGROUND: Knock-in mice provide useful models of congenital and age-related cataracts caused by α-crystallin mutations. R49C αA-crystallin and R120G αB-crystallin mutations are linked with hereditary cataracts. Knock-in αA-R49C+/- heterozygotes develop cataracts by 1-2months, whereas homozygote mice have cataracts at birth. The R49C mutation drastically reduces lens protein water solubility and causes cell death in knock-in mouse lenses. Mutant crystallin cannot function as a chaperone, which leads to protein aggregation and lens opacity. Protein aggregation disrupts the lens fiber cell structure and normal development and causes cell death in epithelial and fiber cells. We determined what aspects of the wild-type phenotype are age-dependently altered in the mutant lens. METHODS: Wild-type, heterozygote (αA-R49C+/-), and homozygote (αA-R49C+/+) mouse lenses were assessed pre- and postnatally for lens morphology (electron microscopy, immunohistochemistry), and autophagy or unfolded protein response markers (immunoblotting). RESULTS: Morphology was altered by embryonic day 17 in R49C+/+ lenses; R49C+/- lens morphology was unaffected at this stage. Active autophagy in the lens epithelium of mutant lenses was indicated by the presence of autophagosomes using electron microscopy. Protein p62 levels, which are degraded specifically by autophagy, increased in αA-R49C mutant versus wild-type lenses, suggesting autophagy inhibition in the mutant lenses. The unfolded protein response marker XBP-1 was upregulated in adult lenses of αB-R120G+/+ mice, suggesting its role in lens opacification. CONCLUSIONS: Mutated crystallins alter lens morphology, autophagy, and stress responses. GENERAL SIGNIFICANCE: Therapeutic modulation of autophagic pathways may improve protein degradation in cataractous lenses and reduce lens opacity. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.


Assuntos
Envelhecimento/genética , Catarata/genética , Catarata/patologia , Cristalinas/genética , Cristalino/patologia , Resposta a Proteínas não Dobradas/genética , Animais , Autofagia/genética , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Cristalino/metabolismo , Camundongos , Mutação
6.
Science ; 350(6261): 674-7, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26542570

RESUMO

Cataracts reduce vision in 50% of individuals over 70 years of age and are a common form of blindness worldwide. Cataracts are caused when damage to the major lens crystallin proteins causes their misfolding and aggregation into insoluble amyloids. Using a thermal stability assay, we identified a class of molecules that bind α-crystallins (cryAA and cryAB) and reversed their aggregation in vitro. The most promising compound improved lens transparency in the R49C cryAA and R120G cryAB mouse models of hereditary cataract. It also partially restored protein solubility in the lenses of aged mice in vivo and in human lenses ex vivo. These findings suggest an approach to treating cataracts by stabilizing α-crystallins.


Assuntos
Catarata/tratamento farmacológico , Hidroxicolesteróis/farmacologia , Cadeia A de alfa-Cristalina/química , Cadeia B de alfa-Cristalina/química , Amiloide/antagonistas & inibidores , Amiloide/química , Animais , Varredura Diferencial de Calorimetria , Catarata/genética , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Humanos , Hidroxicolesteróis/química , Hidroxicolesteróis/uso terapêutico , Camundongos , Conformação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Cadeia A de alfa-Cristalina/genética , Cadeia B de alfa-Cristalina/genética
7.
Int J Cardiol ; 201: 517-28, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26322599

RESUMO

INTRODUCTION: Engraftment of mesenchymal stem cells (MSCs) has emerged as a powerful candidate for mediating myocardial repair. In this study, we genetically modified MSCs with an adenovector encoding thioredoxin-1 (Ad.Trx1). Trx1 has been described as a growth regulator, a transcription factor regulator, a cofactor, and a powerful antioxidant. We explored whether engineered MSCs, when transplanted, are capable of improving cardiac function and angiogenesis in a rat model of myocardial infarction (MI). METHODS: Rat MSCs were cultured and divided into MSC, MSC+Ad.LacZ, and MSC+Ad.Trx1 groups. The cells were assayed for proliferation, and differentiation potential. In addition, rats were divided into control-sham (CS), control-MI (CMI), MSC+Ad.LacZ-MI (MLZMI), and MSC+Ad.Trx1-MI (MTrxMI) groups. MI was induced by left anterior descending coronary artery (LAD) ligation, and MSCs preconditioned with either Ad.LacZ or Ad.Trx1 were immediately administered to four sites in the peri-infarct zone. RESULTS: The MSC+Ad.Trx1 cells increased the proliferation capacity and maintained pluripotency, allowing them to divide into cardiomyocytes, smooth muscle, and endothelial cells. Western blot analysis, 4 days after treatment showed increased vascular endothelial growth factor (VEGF), heme oxygenase-1 (HO-1), and C-X-C chemokine receptor type 4 (CXCR4). Also capillary density along with myocardial function as examined by echocardiography was found to be increased. Fibrosis was reduced in the MTrxMI group compared to MLZMI and CMI. Visualization of Connexin-43 by immunohistochemistry confirmed increased intercellular connections in the MTrxMI rats compared to MLZMI. CONCLUSION: Engineering MSCs to express Trx1 may prove to be a strategic therapeutic modality in the treatment of cardiac failure.


Assuntos
Indutores da Angiogênese/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/fisiologia , Infarto do Miocárdio/terapia , Tiorredoxinas/genética , Animais , Diferenciação Celular , Fibrose/metabolismo , Terapia Genética/métodos , Heme Oxigenase-1/metabolismo , Masculino , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Células-Tronco Mesenquimais/citologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Neovascularização Fisiológica/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores CXCR4/metabolismo , Tiorredoxinas/biossíntese , Tiorredoxinas/metabolismo , Transfecção , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
Antioxid Redox Signal ; 20(16): 2631-65, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23992027

RESUMO

SIGNIFICANCE: In this review, we have discussed the efficacy and effect of small molecules that act as prolyl hydroxylase domain inhibitors (PHDIs). The use of these compounds causes upregulation of the pro-angiogenic factors and hypoxia inducible factor-1α and -2α (HIF-1α and HIF-2α) to enhance angiogenic, glycolytic, erythropoietic, and anti-apoptotic pathways in the treatment of various ischemic diseases responsible for significant morbidity and mortality in humans. RECENT ADVANCES: Sprouting of new blood vessels from the existing vasculature and surgical intervention, such as coronary bypass and stent insertion, have been shown to be effective in attenuating ischemia. However, the initial reentry of oxygen leads to the formation of reactive oxygen species that cause oxidative stress and result in ischemia/reperfusion (IR) injury. This apparent "oxygen paradox" must be resolved to combat IR injury. During hypoxia, decreased activity of PHDs initiates the accumulation and activation of HIF-1α, wherein the modulation of both PHD and HIF-1α appears as promising therapeutic targets for the pharmacological treatment of ischemic diseases. CRITICAL ISSUES: Research on PHDs and HIFs has shown that these molecules can serve as therapeutic targets for ischemic diseases by modulating glycolysis, erythropoiesis, apoptosis, and angiogenesis. Efforts are underway to identify and synthesize safer small-molecule inhibitors of PHDs that can be administered in vivo as therapy against ischemic diseases. FUTURE DIRECTIONS: This review presents a comprehensive and current account of the existing small-molecule PHDIs and their use in the treatment of ischemic diseases with a focus on the molecular mechanisms of therapeutic action in animal models.


Assuntos
Prolina Dioxigenases do Fator Induzível por Hipóxia/antagonistas & inibidores , Isquemia Miocárdica/tratamento farmacológico , Inibidores de Prolil-Hidrolase/farmacologia , Humanos , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Estrutura Molecular , Isquemia Miocárdica/enzimologia , Isquemia Miocárdica/metabolismo , Inibidores de Prolil-Hidrolase/química , Relação Estrutura-Atividade
9.
Exp Eye Res ; 115: 263-73, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23872361

RESUMO

The formation of cataracts is associated with the accumulation of protein aggregates in the ocular lens, suggesting that defective protein degradation plays a role in cataract pathogenesis. Accumulation of the p62 protein has recently been identified as a marker for impaired autophagy in a variety of tissues; however, little information exists on its expression in the ocular lens and in cataracts. In the present study we examined the expression of p62 in the mouse lens and compared its expression in wild-type lenses with that in lenses from knock-in mice with an arginine to glycine mutation in αB-crystallin (αB-R120G) that is known to cause human hereditary cataract. Immunohistochemical, immunoblotting, and transmission electron microscopic analyses of wild type and αB-R120G mutant mice were performed. To assess the effect of increased protein aggregation on autophagy, immunohistochemical staining was performed with an anti-p62 antibody, revealing the presence of p62-positive punctate staining in a band of denucleated cortical fiber cells. The number and size of p62 puncta were significantly greater in αB-R120G homozygous mutant lenses than in wild type and heterozygous mutant lenses. p62 staining was also abundant in lens epithelial cells and was concentrated around the nuclear membrane. Double-membraned structures similar to autophagosomes containing cellular cytoplasmic content were detected in lens epithelial cells by transmission electron microscopy. The autophagosomes in lens epithelial cells from αB-R120G homozygous mutant mice were larger than those in wild type mice. Double-membraned structures that are probably autophagosomes were also detected in cortical fiber cells and were more abundant in the αB-R120G homozygous mutant lens than the wild type lens. This study demonstrates p62 distribution as speckles in the lens fiber cells, altered levels of p62 expression, and the presence of autophagosomes in the ocular lens of αB-R120G mutant mice. We propose that autophagy is inhibited in the αB-R120G mutant lenses because of a defect in protein degradation after autophagosome formation. Further work is necessary to determine the relationship between αB-crystallin function, autophagy, and cataract formation.


Assuntos
Autofagia/genética , Catarata/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica/fisiologia , Fatores de Transcrição/genética , Cadeia B de alfa-Cristalina/genética , Animais , Catarata/metabolismo , Catarata/patologia , Células Epiteliais/metabolismo , Células Epiteliais/ultraestrutura , Técnica Indireta de Fluorescência para Anticorpo , Genótipo , Immunoblotting , Cristalino/metabolismo , Cristalino/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Fagossomos/ultraestrutura , Mutação Puntual , Reação em Cadeia da Polimerase , Fator de Transcrição TFIIH , Fatores de Transcrição/metabolismo , Cadeia B de alfa-Cristalina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...